中国钢铁工业规模巨大,主要由高炉转炉长流程生产,其能源结构中90%为煤炭,是国家兑现2030年降低碳排放强度承诺的主战场之一。基于当前低碳炼铁技术的研发进展、中国面临的碳减排任务、中国钢铁工业的生产模式、中国钢铁工业碳排放现状等基本事实,提出了以高炉为主体、以炉顶煤气循环耦合富氢还原为技术特征的钢铁工业低碳发展的可行路径,分析了该工艺研发所面临的关键问题,以期引起钢铁行业的重视,为中国钢铁工业进一步深度降低碳排放提供参考。
在用低品位菱铁矿制备电炉原料(碳化铁)的过程中,考察了钠盐对菱铁矿渗碳的影响以及对碳化铁和脉石分离的作用机理。结果表明,钠盐能显著提高渗碳效率,强化碳化铁颗粒长大,改善碳化铁和脉石的嵌布关系,从而促进了碳化铁和脉石的分离。当菱铁矿球团中分别添加15%的Na2SO4和Na2CO3后,磁选精矿的铁品位、铁回收率和化合碳质量分数分别从57.59%、26.18%、2.68%提高到73.23%、88.03%、4.56%和70.00%、83.81%、3.89%。
烧结终点的稳定控制是提高烧结机利用效率及烧结矿产量和质量的前提,因此获得准确的烧结终点位置是优化烧结过程的基础。通过分析烧结过程参数对烧结终点位置的影响,提出一种适用于烧结终点预测的集成算法。在AdaBoost.RS算法的基础上,自适应调整松弛变量的阈值,以极限学习机为弱学习器建立烧结终点位置预报集成算法模型。以宝钢烧结面积为495 m2的烧结机为例,利用实际生产数据进行模型检验。结果表明,当绝对误差小于1.6 m时,模型的预报结果命中率为97.4%,均方根误差为0.58,预报值序列与实际目标值序列的相关系数为0.78。对各影响因素定量分析结果表明,影响烧结终点位置的前三因素依次为料层厚度、台车速度与配水量。
为充分利用高炉粉尘中的铁、碳等有价资源,以水钢烧结除尘灰、高炉重力灰和高炉布袋灰为主要原料,根据配碳量的不同压制成冷固球团,不仅可以弥补单一成分成球性的劣势,还可以充分利用粉尘中的有价资源进行自还原反应。结果表明,随着还原温度的升高和反应时间的延长,球团的金属化率和脱锌率逐渐增加,反应温度为1 200 ℃时已达到了理想的试验效果,反应10 min后,金属化率和脱锌率分别为87.13%和95.25%;随着配碳量的增加,金属化率和脱锌率呈现不同的趋势,当碳氧摩尔比在1.3左右时,金属化率和脱锌率的指标较理想。
为优化120 t复吹转炉冶炼效果,通过水模型试验,模拟研究了复吹转炉底吹强度、顶枪枪位、底吹排布方式和流量分配比对渣钢间传质效果和熔池混匀时间的影响。研究表明,在相同底吹条件下,顶枪低枪位操作时渣钢间传质系数比高枪位操作时渣钢间传质系数大,且随着底吹流量分配比增大,渣钢间传质系数先增大后减小。在相同顶枪枪位操作条件下,底吹元件间隔排布时,渣钢界面传质效果总体优于连续排布。随着底吹流量分配比增大,高枪位和低枪位混匀效果变化趋势近似相反。在高枪位下,底吹元件连续排布混匀时间总体少于底吹元件间隔排布时对应的混匀时间;在顶枪低枪位操作条件下,底吹元件连续排布混匀时间总体大于间隔排布混匀时间。通过顶枪枪位、底吹排布和流量分配比的合理匹配,较传统均衡流量底吹模式,传质系数可提高30%~125%,混匀时间可减少8.6%~51.5%。
开展了非对称轧制对AZ31B镁合金晶粒细化影响的研究,分析了不同温度及不同压下率时宏观形貌和晶粒尺寸变化,并与对称轧制作了对比。结果表明,非对称轧制的整体晶粒尺寸比对称轧制更为细化;非对称轧制在温度为350 ℃、压下率为60%时晶粒最为细小均匀,上表面、中心层和下表面的平均晶粒尺寸分别为2.35、2.84和2.22 μm。在初轧温度为300~350 ℃范围内,组织产生充分动态再结晶;随着轧制温度继续升高,晶界产生充分迁移和扩散,晶粒随之长大,导致镁合金的综合性能变差。非对称轧制板材的抗拉强度和断后伸长率都优于对称轧制板材,在400 ℃轧制时,压下率为30%时获得较为优异的综合力学性能,抗拉强度为365.36 MPa,断后伸长率为34.9%。
研究了500~670 ℃回火热处理对轧制钛/钢复合板界面组织与性能的影响,以期为复合板热加工的工艺参数制定提供指导。对轧态和回火态的钛/钢复合板进行了拉伸、冲击和剪切试验测试,并利用光学显微镜、扫描电镜、X射线衍射等研究手段表征了复合板的界面组织、剪切断口形貌及断口反应相。结果表明,回火热处理后,钛/钢复合板的剪切性能降低,随着回火温度的升高,剪切强度呈现下降趋势。轧态和回火态复合板界面反应相均为βTi和TiC,其中TiC反应相的厚度随着回火温度的升高呈现增厚趋势。TiC脆性相厚度的增加导致了复合板剪切强度的下降,且使得剪切断口呈现脆性断裂倾向增大,撕裂特征减弱,呈现出明显的平滑断裂特征。
针对GCr15SiMn钢锭在凝固过程中容易出现宏观偏析与疏松等凝固缺陷的问题,为了制定更合理的模铸浇注工艺,通过真空感应炉冶炼1 kg的GCr15SiMn钢锭,从模铸工艺和钢锭宏观组织的角度研究了实验室与工业生产的相似性,采用OPA、SEM等检验方法研究了碳偏析与疏松的相关性。研究表明,碳元素的偏析最为严重,碳元素偏析与疏松相关。得出了碳偏析与疏松的相关性公式SC=0.92P-0.89,该公式所体现出的基本规律适用于工业生产的铸锭。根据SEM和OPA的统计结果,建立了疏松的当量直径与其定量表征值(表观致密度P)的对应关系。结果表明,随着疏松的当量直径增大,碳的偏析度逐渐增大。利用Scheil微观偏析模型从原理上进行了分析与讨论,得出碳的偏析度和钢液收缩量呈正相关关系。
通过对干熄焦锅炉炉管及腐蚀产物开展系统研究,提出炉管失效原因为氧化/硫腐蚀+高温粉尘冲刷。长寿命炉管仅耐磨层发生了较为严重的氧化及硫腐蚀,而近基体层发生了轻微氧化及硫腐蚀,基体只发生了轻微氧化;短寿命炉管耐磨层、近基体层以及基体裂纹内均发生了较为严重的氧化及硫腐蚀,且存在珠光体球化、内表面产生全脱碳层等缺陷。推测短寿命炉管存在超温现象,而超温可加剧氧化及硫腐蚀反应。此外,短寿命炉管遭受了较为严重的高温粉尘冲刷,不仅可造成炉管减薄,还会导致炉管表面温度升高。因此,减少循环气体中粉尘量尤其是大颗粒,可有效减弱冲刷以及控制炉管表面温度,是提高炉管使用寿命的关键。
焦炉烟气中存在的大量SO2和NOx是形成酸雨和雾霾的主要污染物。为了落实当前环保生产的基本国策,对焦炉烟气进行脱硫脱硝除尘处理已成为各大企业的当务之急。主要研究了SDS干法脱硫+中低温SCR脱硝除尘工艺在实际工程中的应用,该工艺效率高,副产品少,抗冲击能力强,是目前国际上一种较为先进的焦炉烟气净化处理技术。采用SDS+SCR工艺对鞍钢股份有限公司炼焦总厂8号焦炉烟气进行脱硫脱硝处理,实际结果表明,当设备入口处焦炉烟气中SO2、NOx和粉尘的平均质量浓度分别为83.84、439.67和18.43 mg/m3时,出口处烟气中3种污染物的质量浓度分别低于30、150和5 mg/m3,满足GB 16171—2012中的排放要求。研究可以为焦化行业的污染物治理提供可鉴方案和经验。
研究了直接还原回转窑实现含锌固废协同处理的工艺技术。对固废中的含锌化合物的还原及分离理论进行了研究,在回转窑内,只要满足温度T>1 500 K、气氛还原φ(CO)>70%条件,就能实现锌从废渣中还原分离出来,同时废渣中的铁也能够被还原,得到回收利用。在某海绵铁生产厂的回转窑上进行了试验验证,得到含锌20%(质量分数)的富锌灰,锌渣中95%(质量分数)以上的铁作为副产物进入到海绵铁中。试验结果表明,协同处理在不影响直接还原生产海绵铁工艺的前提下,实现了含锌固废的综合利用,此次试验中烟气的含硫量成为限制环节,含锌固废的最大配加量以2%为宜。
为了研究多孔复合管膜对钢铁产业污水的过滤性能及其过滤机理,采用静滴法做了水滴和油滴在复合管膜上的润湿性研究。采用扫描电镜、EDS等手段分析了使用前后的多孔复合管膜外壁及内壁的结构及成分,分析了含油污水中固体颗粒及油的过滤机理,并利用视频光学接触角测量仪测量水滴和油滴在复合管膜上接触角随时间的变化速率。结果表明,在污水过滤过程中,水中小于管膜表层微孔孔径的氧化铁等杂质进入复合管膜内部,无法随水流穿过复合管膜膜层,积累在管膜内部;随着管膜使用时间延长,氧化铁等杂质在复合管膜内部积累量增多。水在复合管膜上的润湿性良好,油滴在复合管膜上是不润湿的。
为了研究废水中有机物的去除问题,针对某企业含有机物废水进行了对比试验,采用了Fenton絮凝联合工艺去除废水中的COD(化学需氧量)和浊度,考察了初始pH值、H2O2投加量、H2O2与Fe2+投加物质的量比、反应时间、絮凝剂投加量以及絮凝剂投加时的pH值对COD以及浊度去除效果的影响。结果表明,采用最佳工艺参数组合后,浊度去除率和COD的去除率分别为99.32%和97.27%。
介绍了首钢京唐钢轧部真空精炼炉的选择依据及VD炉工艺设计特点。双工位VD炉主要由真空泵及真空度自动调节系统、车载式移动真空罐车及罐盖系统、合金加料系统、底吹氩系统等组成,具备脱气、脱氧、自然脱碳及调整合金成分、去除夹杂和净化钢水的冶金功能。双盖双罐位布置模式,可缩短精炼处理时间约5~10 min,使转炉精炼连铸衔接匹配合理、顺畅;在线喂线工艺的实施,可提高芯线吸收率,实现环境友好。